Penentuan kesegaran ikan menjadi langkah penting dalam pengkonsumsian ikan. Perubahan mayor yang dijadikan patokan kesegaran ikan adalah warna, bau dan tekstur. Mata ikan akan berubah semakin cekung dan keruh pada ikan yang busuk selanjutnya mengeluarkan bau dan tekstur daging menjadi lunak (SNI). Perubahan fisik secara visual pada kebusukan ikan mampu diterjemahkan menjadi deretan angka dengan bantuan pengolahan citra digital.
Penerapan pengolahan citra untuk menentukan kesegaran ikan dan bahan makanan lain telah dilakukan oleh beberapa peneliti. Dutta et al (2016) melaporkan bahwa penentuan tingkat kesegaran ikan dapat dilakukan menggunakan pengolahan citra insang ikan. Menesatti et al (2010) menyebutkan bahwa citra digital ikan berbasis kamera hyperspektral bisa menjadi dasar penentu kesegaran ikan. Kelemahan dua penelitian tersebut adalah bersifat destruktif karena perlu pemotongan operculum ikan untuk memperoleh citra insang yang baik dan diperlukan kamera hyperspektral yang harganya cukup mahal. Oleh karena itu, penelitian terkait penerapan model neural network pattern regognition yang bersifat nondestruktif dengan menggunakan kamera biasa masih perlu dikembangkan.
Penerapan pengolahan citra untuk menentukan kesegaran ikan dan bahan makanan lain telah dilakukan oleh beberapa peneliti. Dutta et al (2016) melaporkan bahwa penentuan tingkat kesegaran ikan dapat dilakukan menggunakan pengolahan citra insang ikan. Menesatti et al (2010) menyebutkan bahwa citra digital ikan berbasis kamera hyperspektral bisa menjadi dasar penentu kesegaran ikan. Kelemahan dua penelitian tersebut adalah bersifat destruktif karena perlu pemotongan operculum ikan untuk memperoleh citra insang yang baik dan diperlukan kamera hyperspektral yang harganya cukup mahal. Oleh karena itu, penelitian terkait penerapan model neural network pattern regognition yang bersifat nondestruktif dengan menggunakan kamera biasa masih perlu dikembangkan.
Neural Network atau Jaringan Syaraf Tiruan (JST) merupakan sebuah metode pengenalan pola, prediksi, klasifikasi dan pendekatan fungsi yang meniru arsitektur kerja otak. JST memiliki tiga lapisan yaitu lapisan input, lapisan tersembunyi dan lapisan output. Salah satu algoritma pada JST adalah backpropagation yang mempunyai kemampuan untuk melakukan dua tahap perhitungan yaitu perhitungan maju dan turun. Perhitungan maju untuk menghitung eror antara output dan target, sedangkan perhitungan mundur sebagai penghitungan balik eror untuk memperbaiki bobot pada semua neuron yang ada. Penerapan JST dengan algoritma backpropagation dalam pengambilan keputusan telah dilaporkan beberapa peneliti. Kusmaryanto, S (2014) menggunakan JST Backpropagation untuk pengenalan wajah. Dewi et al (2009) mampu menerapkan JST untuk memprediksi kelulusan mahasiswa. Lebih jauh lagi di bidang perikanan, Dowlati et al (2009) menggunakan metode regresi dan neural network untuk memprediksi tingkat kesegaran ikan bawal.
Tahapan dalam sebuah JST pattern recognition adalah akuisisi data, preprocessing, ekstraksi ciri dan pengenalan data (Putra, D. 2010). JST dikembangkan dari data citra Red Green Blue (RGB) yang diukur menggunakan computer vision system. Sebuah citra dalam model Red Green Blue (RGB) memiliki tiga komponen warna utama yaitu merah, hijau dan biru dengan rentang nilai setiap komponen utama antara 0-225. Warna selain komponen utama adalah hasil percampuran komponen warna utama dengan nilai tertentu. Penggunaan komponen RGB dalam bentuk data statistik yang digunakan sebagai input pada jaringan pengambil keputusan telah dilaporkan. Hariyanto (2009) menggunakan metode pengubahan komponen RGB pada gelang resistor untuk mengetahui nilai resistansinya. Lebih lanjut dibidang perikanan Issac et al (2017) mampu menggunakan data masukan nilai RGB citra insang sebagai penentu tingkat kesegaran ikan.
Berdasarkan beberapa literatur di atas, penerapan JST pattern recognition di bidang perikanan masih belum digunakan secara luas, padahal metode image processing dengan JST sebagai pengambil keputusan yang akurat. Oleh karena itu, LRMPHP telah melakukan penelitian untuk mengetahui kemampuan JST dalam memprediksi kesegaran ikan tuna (Thunnus sp.).
Rangkaian penelitian dimulai dengan pengambilan data citra mata ikan menggunakan kamera logitech 8 megapiksel di dalam kotak khusus berukuran x 55 x 12 cm yang telah dilengkapi dengan lampu LED pada empat titik. Citra mata ikan yang diperoleh selanjutnya melewati dua tahapan pengolahan citra menggunakan software matlab 2014a, yaitu preprocessing dan ekstraksi rata rata nilai RGB citra mata ikan. Berikut diagram proses penelitian (Gambar 1.) dan alur preprocessing citra mata ikan (Gambar 2.).
Gambar 1. Diagram proses penelitian
|
Gambar 2. Alur preprocessing citra mata ikan
|
Hasil preprocessing citra mata ikan pada penelitian ini terlihat pada Gambar 3. berikut:
Gambar 3. Hasil preprocessing citra mata ikan |
Berdasarkan olah data yang dilakukan maka diperolah nilai akurasi, sensitivitas dan spesivitas pengujian masing-masing sebesar 86, 95 dan 71 %. Nilai AUC yang diperoleh sebesar 0,834, sehingga dapat dsimpulkan bahwa metode klasifikasi kesegaran ikan berdasarkan nilai rata rata RGB citra mata ikan tergolong baik.
0 comments:
Posting Komentar