Status kesegaran ikan berkaitan erat dengan keamanan makanan bagi konsumen dan cita rasa ikan. Metode uji kesegaran ikan yang sering digunakan saat ini adalah uji organoleptik yang didasarkan pada bau ikan, tekstur daging ikan dan kondisi visual ikan. Validitas uji ini bergantung pada panelis terlatih yang berpengalaman sehingga hal ini dapat menjadi kendala terkait ketersediaan panelis terlatih. Selain uji organoleptik, uji kimiawi dan bakteri lazim digunakan dilaboratorium pengujian.
Uji kimiawi didasarkan pada produksi senyawa gas volatil yang dihasilkan saat proses pembusukan ikan. Senyawa gas volatil tersebut diikat oleh asam borat dan pengukuran kadarnya dengan titrasi HCl. Untuk meningkatkan keakurasian pendeteksian produksi senyawa volatil dapat dilakukan dengan menggunakan kromatografi cair (HPLC) atau kromatografi gas (GC). Sampai saat ini, metode kromatografi memiliki akurasi yang paling baik namun memberikan biaya pemeriksaan yang mahal dan hanya bisa dilakukan di dalam laboratorium dengan peralatan khusus. Sementara itu, pengujian bakteri yang didasarkan pada jumlah populasi bakteri total pada ikan memerlukan waktu yang relatif lama untuk inkubasi penumbuhan total bakteri. Tingginya populasi bakteri pada ikan tersebut dianggap sebagai penanda peningkatan aktivitas bakteri pembusuk.
Uji kimiawi didasarkan pada produksi senyawa gas volatil yang dihasilkan saat proses pembusukan ikan. Senyawa gas volatil tersebut diikat oleh asam borat dan pengukuran kadarnya dengan titrasi HCl. Untuk meningkatkan keakurasian pendeteksian produksi senyawa volatil dapat dilakukan dengan menggunakan kromatografi cair (HPLC) atau kromatografi gas (GC). Sampai saat ini, metode kromatografi memiliki akurasi yang paling baik namun memberikan biaya pemeriksaan yang mahal dan hanya bisa dilakukan di dalam laboratorium dengan peralatan khusus. Sementara itu, pengujian bakteri yang didasarkan pada jumlah populasi bakteri total pada ikan memerlukan waktu yang relatif lama untuk inkubasi penumbuhan total bakteri. Tingginya populasi bakteri pada ikan tersebut dianggap sebagai penanda peningkatan aktivitas bakteri pembusuk.
Metode lain yang lebih fleksibel dan praktis adalah pengukuran kesegaran ikan menggunakan alat Torry meter. Prinsip kerja alat tersebut dengan mengukur konduktivitas jaringan ikan. Konduktivias jaringan ikan didefinisikan sebagai sifat elektrokimia yang semakin meningkat seiring tingkat pembusukan ikan. Namun alat tersebut hanya bisa digunakan pada permukaan kulit ikan, tidak bisa digunakan pada fillet ikan dan ikan yang di bekukan.
Ditengah kekurangan metode pemeriksaan kesegaran ikan saat ini, aplikasi sensor gas semikonduktor sebagai pendeteksi kesegaran ikan menawarkan metode yang relatif cepat, murah dan mudah. Sensor gas semikonduktor menggunakan sebuah material (SnO2, ZnO dan TiO2) dengan konduktivitas berubah ubah menyesuaikan absorbsi gas. Aplikasi sensor gas semikonduktor untuk keperluan deteksi kesegaran ikan telah banyak dilaporkan. Ho Park, et al (2013) menggunakan deret sensor gas untuk pendeteksian senyawa trimethylamin dan amonia. Barbri et al (2009) dapat memanfaatkan deret sensor untuk menentukan kesegaran ikan sarden. Bahkan secara lebih jauh Olafsdottir, et al (2006) melaporkan menggunakan elektronic nose untuk mendefinisikan sisa metabolism spesifik sebuah bakteri pembusuk. LRMPHP juga telah mengembangkan penggunaan sensor gas untuk pemeriksaan kemunduran mutu ikan. Salah satu jenis sensor yang digunakan adalah sensor jenis MQ-136 untuk pendeteksian gas H2S pada ikan tuna.
Saat ini sensor gas telah diproduksi masal dengan harga yang relatif murah, variatif dan spesifik dalam mendeteksi gas. Sensor MQ-3 merupakan sensor yang sensitif untuk mendeteksi gas alkohol sedangkan sensor MQ-9 merupakan sensor yang memiliki kemampuan untuk mendeteksi gas CO pada sumber daya rendah dan mendeteksi gas metana pada sumber daya tinggi. Sensor gas hanya mampu membaca data analog berupa gas, sehingga masih diperlukan mikrokontroler sebagai pengubah sinyal analog dari sensor ke data digital berupa deretan angka. Sensor MQ-3 atau MQ-9 dapat dengan mudah ditemui di toko elektronik robotika, hal ini dapat menjadikan sensor MQ-3 atau MQ-9 sebagai alternatif yang cepat, mudah dan murah untuk pendeteksian kebusukan ikan.
Atas dasar itu maka LRMPHP telah melakukan penelitian tentang perbandingan pembacaan sensor gas (MQ-3 dan MQ-9) pada proses pembusukan ikan tuna seperti dipublikasikan dalam SIMNASKP IV UNHAS 19-20 Mei 2017 di Makasar. Penelitian untuk mengetahui respon terbaik dua sensor tersebut terhadap perubahan bau ikan tuna sehingga diperoleh sensor gas yang paling baik untuk mendeteksi pembusukan ikan tuna.
Rangkaian pembacaan sensor gas MQ-3 dan MQ-9 terhadap kebususkan ikan pada penelitian tersebut dapat dilihat pada Gambar 1.
Gambar 1. Rangkaian pembacaan sensor gas MQ-3 dan Mq 9 terhadap kebusukan ikan |
Hasil pembacaan sensor MQ-3 dan MQ-9 terhadap sampel ikan tuna masing-masing dapat dilihat pada Gambar 2 dan 3 berikut:
Gambar 2. Grafik regresi pembacaan sensor MQ 3 terhadap waktu
|
Gambar 3. Grafik regresi pembacaan sensor MQ-9 terhadap waktu
|
Berdasarkan hasil uji regresi sensor gas terhadap waktu pengamatan, terdapat korelasi yang kuat antara pembacaan sensor MQ-3 dan MQ-9 terhadap pembusukan ikan. Nilai R2 sebesar 0,945 volt untuk sensor MQ-9, lebih tinggi dibandingkan nilai R2 untuk sensor MQ-3 sebesar 0,847 volt, hal ini menunjukkan waktu lebih berpengaruh terhadap pembacaan sensor MQ-9 dari pada sensor MQ-3.
Sumber : Prosiding SIMNASKP IV UNHAS 2017
0 comments:
Posting Komentar