Selasa, 28 Desember 2021

Deep Neural Networks Untuk Analisis Video Pengawasan Perikanan Dan Otomatisasi Monitoring Kasus Pembuangan Ikan Di Tengah Laut

Proses segmentasi citra dari kapal riset, citra ikan dengan outline biru muncul secara otomatis pada sistem yang dikembangkan dalam riset. Sumber gambar: French et al (2020)

Upaya pemantauan dan penghitungan jumlah tangkapan ikan yang dibuang selama operasi kapal penangkap ikan dengan jaring trawl terus dikaji memanfaatkan  sistem visi komputer berbasis analisis video dari kamera CCTV yang terpasang pada sejumlah kapal trawl. Sekelompok peneliti dari University of East Anglia, Norwich Research Park, Norwich, berupaya mengembangkan sebuah sistem monitoring pembuangan hasil tangkapan kapal trawl yang diaplikasikan  secara real time saat kapal-kapal tersebut beroperasi.  Sistem yang dikembangkan diharapkan mampu mengatasi kelangkaan jumlah dan biaya pengamat untuk melakukan sampling dan mengestimasi jumlah ikan tangkapan yang dibuang. Selain itu keberaadaan undang-undang di Uni Eropa secara tegas mengatur kuota tangkapan individual dari kapal trawler mendorong pengembangan pengukuran presisi berdasarkan total berat ikan yang didaratkan di pelabuhan pendaratan ikan.  

Eksperimen yang dilakukan untuk menggunakan computer vision dalam menghitung ikan tak terpakai dalam penangkapan tersebut telah dipublikasikan oleh French et al  dalam Jurnal  ICES Journal of Marine Science (2020), 77(4), 1340–1353. doi:10.1093/icesjms/fsz149. Metode yang dikembangkan mencakup data latih yang terdiri dari sejumlah citra hasil ekstrasi rekaman video dilengkapi  dengan proses anotasi ground truth secara presisi. Rekaman video berasal dari 5 kamera yang ditempatkan pada 5 kapal trawl komersial dengan resolusi 800 piksel High Definiton  yang disimpan dalam format MPEG-4. Penempatan kamera pada kapal trawl commersial memiliki sejumlah tantangan teknis karena adanya noise selama perekaman mencakup operator yang bekerja di sekitar konveyor berjalan dan percikan air di seputar pelindung kamera. 

Secara umum proses sampling ikan secara otomatis meliputi: (1) Deteksi ikan; (2) Klasifikasi spesies ikan; (3) Pengukuran biomassa ikan menggunakan metode regresi hubungan antara panjang dan biomassa ikan. Tantangan utama yang dijumpai  selama pengembangan sistem meliputi pendugaan panjang ikan, penjejakan ikan antar frame video, dan pengenalan ulang spesies ketika ikan lepas dari tampilan akibat suatu objek penghalang. 

Proses pengembangan sistem meliputi akuisisi data dan set data, segmentasi, identifikasi spesies, dan evaluasi performa. Pada tahap akuisisi data dan set data dikembangkan proses untuk mengekstrak citra penting dari video rekaman CCTV yang dapat dianotasi (oberian label) sehingga memungkinkan untuk melatih dan mengevaluasi komponen pembelajaran mesin dari sistem yang dikembangkan. Untuk tahap segmentasi citra dikembangkan sejumlah metode, antara lain segmentasi semantik untuk mengenali region dari suatu citra yang memiliki gambar ikan didalamnya dilanjutkan dengan pemisahan citra ikan menggunakan deteksi tepi. Teknik segmentasi ini sangat efektif untuk rekaman video resolusi VGA namun kurang berhasil untuk video beresolusi HD. Algoritma yang efektif untuk video resolusi HD adalah Mask RCNN. Pada tahap identifikasi spesies dikembangkan menggunakan citra yang disegmentasi mask RCNN dengan sebuah pengklasifikasi multi kelas. Evaluasi  performa dilakukan menggunakan Conffusion Matrix, hasilnya menunjukkan tingkat akurasi tertinggi 93,4% untuk spesies ikan Plaice (Pleuronectes platessa),dan akurasi terendah sebesar 18,4% untuk spesies Common Dab (Hippoglosoides sp.). 


Penulis : I Made Susi Erawan - LRMPHP


0 comments:

Posting Komentar