Kamis, 16 Desember 2021

Deteksi Ikan Menggunakan Algoritma YOLO

Obyek Deteksi Menggunakan YOLO

Potongan scene dalam sebuah film bergenre science fiction menggambarkan visualisasi dari robot yang mampu mendeteksi berbagai bentuk obyek disekitarnya. Hmm.. jika kita agak kurang kerjaan sedikit dengan memikirkan software apa yang digunakan agar si robot tersebut bisa mendeteksi obyek disekitarnya? Rupanya teknologi tersebut sudah dapat kita jumpai dikehidupan kita sehari hari hari. Beberapa sistem cctv yang canggih telah menerapkan metode obyek deteksi untuk pengenalan beberapa jenis obyek. Obyek deteksi merupakan suatu proses yang digunakan untuk menentukan keberadaan obyek tertentu, biasanya obyek tersebut divisualisasikan dalam sebuah penanda berupa kotak. 

Obyek deteksi tersebut dapat dibuat menggunakan metode deep learning. Saat ini telah banyak berkembang algoritma yang dapat menfasilitasi metode tersebut. YOLO dikenal sebagai algoritma obyek deteksi yang memiliki performa yang bagus. YOLO dikenalkan pertama kali oleh penciptanya Joseph Redmon pada sebuah konferensi internasional IEEE Conference on Computer Vision and Pattern Recognition pada tahun 2016. Hingga saat ini, YOLO telah berkembang hingga YOLOV5 dimana pada setiap seri terdapat perbaikan dan penyempurnaan algoritma. Kabar baiknya dari setiap seri YOLO tersebut beredar bebas di internet tepatnya di laman github.com dan tentu saja tutorial terpisahnya di media sosial youtube.

Untuk membangun sebuah weight custom (sesuai keinginan kita) diawali degan pengumpulan dataset, setidaknya diatas 100 gambar untuk setiap obyek. Dilanjutkan dengan anotasi gambar tersebut atau bahasa awam “menandai” dimana letak gambar itu. Selanjutnya mengubah beberapa file konfigurasi yang disesuaikan dengan data latih yang akan kita bangun. Jika ingin melatih weight dengan personal computer (pc) kita sepertinya diperlukan spesifikasi yang cukup tinggi dibanding dengan kebutuhan pc untuk mengetik misalnya. Namun demikian, sebuah web editor dengan nama google colab dapat dimanfaatkan untuk mendapatkan fasilitas setara computer dengan performa tinggi. Selama waktu training beberapa parameter dapat diketahui untuk melihat apakah weight yang kita training telah cukup baik untuk digunakan mendeteksi atau perlu lebih lama lagi waktu trainingnya, diantaranya accuracy training, accuracy loss, validasi training dan validasi loss. Semakin tinggi nilai accuracy dan semakin rendah nilai loss maka model tersebut semakin baik. 

Dalam paper yang ditulis oleh Joseph Redmon diatas disebutkan bahwa YOLO memiliki tingkat akurasi yang tinggi untuk mendeteksi suatu obyek benda. namun demikian rupanya belum banyak yang menerapkannya pada ikan. LRMPHP telah berhasil membangun deteksi gambar berbasis pada arsitektur YOLO pada sebuah paper berjudul Deteksi Ikan Nila Menggunakan Arsitektur YOLO pada Iterasi yang Berbeda. Paper tersbut diterbitkan pada buku Prosiding Semnaskan UGM ke XVIII tahun 2021 oleh Departemen Perikanan Fakultas Pertanian UGM. 

Dalam penelitian tersebut digunakan 97 ekor ikan nila sebagai data latih untuk membangun weight dan digunakan 19 ikan yang berbeda sebagai data uji. Perlakuan berupa perbedaan iterasi selama training. Tiga perlakuan iterasi digunakan yaitu I1 menggunakan 500 iterasi, I2 menggunakan 1000 iterasi dan I3 menggunakan 2000 iterasi. Untuk mempermudah selama training data latih menggunakan web editor berupa google colab. Hasil penelitian menunjukkan bahwa kelompok I2 menunjukkan nilai akurasi, sensitivitas dan spesivitas lebih baik dibandingkan dengan kelompok yang lain. Dimana nilai akurasi, sensitivitas dan spesivitas mencapai 84,2 %, 90 % dan 77,78 %

Kira kira, adakah yang tertarik untuk mencoba metode obyek deteksi tersebut ? <smile>



Penulis : Koko Kurniawan - LRMPHP

0 comments:

Posting Komentar