PELATIHAN

LRMPHP telah banyak melakukan pelatihan mekanisasi perikanan di stakeholder diantaranya yaitu Kelompok Pengolah dan Pemasar (POKLAHSAR), Kelompok Pembudidaya Ikan, Pemerintah Daerah/Dinas Terkait, Sekolah Tinggi/ Universitas Terkait, Swasta yang memerlukan kegiatan CSR, Masyarakat umum, dan Sekolah Menengah/SMK

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Kerjasama

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Rabu, 25 Desember 2019

SIKLUS REFRIGERASI UNTUK PENYIMPAN IKAN DI KAPAL



Salah satu alternatif upaya peningkatan penanganan ikan di kapal adalah penerapan sistem refrigerasi di atas kapal untuk meningkatkan kemampuan simpan ikan hasil tangkapan nelayan yang telah banyak diaplikasikan pada kapal penangkap ikan di Indonesia. Sistem pendinginan refrigerasi yang banyak digunakan saat ini adalah sistem pendinginan kompresi uap dan absorpsi uap.Teknologi refrigerasi tersebut digunakan antara lain untuk penanganan ikan di kapal dengan sistem refrigerated sea water (RSW) pada pendinginan dengan suhu sekitar 0 ºC.

Sistem refrigerasi kompresi uap pertama kali diperkenalkan oleh Oliver Evans dan dipatenkan pertama kali oleh Jacob Perkin tahun 1835 dengan paten mesin pendingin siklus kompresi uap pertama. Selanjutnya sistem refrigerasi absorpsi pertama kali dikembangkan oleh Ferdinand Carre di Perancis, kemudian dipatenkan di Amerika Serikat pada tahun 1860. Pada permulaan abad ke-20, sistem pendinginan absorpsi berkembang pesat dan secara luas digunakan. Tetapi setelah tahun 1915, dimana motor listrik mulai dikembangkan, sistem kompresi amonia secara aktif diperkenalkan dan diterima secara luas. Pengembangan kemudian terkonsentasi pada sistem kompresi uap dan sistem absorpsi uap secara praktis dilupakan, sampai akhir 1930-an. Pada sistem kompresi uap, absorber, pompa, dan generator yamg terdapat pada sistem refrigerasi absorpsi uap diganti dengan kompresor pada sistem kompresi uap.

Pada sistem pendinginan kompresi uap menggunakan kompresor untuk menaikkan tekanan refrigeran, sedangkan pada sistem pendinginan absorpsi, penggunaan sumber energi murah sebagai suplai energi pada generator dapat dimungkinkan. Beberapa contoh dari sumber energi murah yang dimaksudkan disini antara lain energi matahari, energi panas bumi, maupun energi buangan seperti uap sisa dalam sistem pembangkit turbin yang masih mempunyai suhu tinggi sehingga masih dapat dimanfaatkan sebelum dibuang. Perbedaan utama dari sistem kompresi uap dengansistem pendinginan absorpsi terletak pada cara menaikkan tekanan refrigeran. Pada siklus pendinginan absorpsi, refrigeran dinaikkan tekanannya pada saat masih berupa fase cair, sedangkan pada siklus kompresi uap, refrigeran dinaikkan tekanannya saat berupa fase uap. Prinsip menaikkan tekanan refrigeran tanpa mengubah volumenya (refrigeran cair termasuk fluida yang tak mampu mampat) membuat sistem pendinginan absorpsi sangat cocok digunakan sebagai pendingin bertenaga matahari, sumber kalor pembakaran bahan bakar, atau pemakaian uap sisa. Hal ini akan mengurangi kebutuhan energi dibandingkan bila menggunakan kompresor.

Pada siklus refrigerasi kompresi uap, siklus yang terjadi adalah siklus kompresi uap. Ada empat komponen utama dari siklus ini, yaitu kompresor, kondenser, evaporator, dan katup ekspansi. Gambar skema dan diagram tekanan-entalpi (P-h) dari siklus kompresi uap terdapat pada Gambar 1.


Gambar 1. Skema dan diagram P-h siklus refrigerasi kompresi uap

Kompresor berfungsi untuk mengkompresi refrigeran dari evaporator (titik 1) sehingga tekanannya naik (titik 2). Selanjutnya di kondenser terjadi kondensasi refrigeran, refrigeran berubah fase menjadi cair (dari titik 2 ke titik 3), pendinginan dapat dilakukan dengan air, udara, atau keduanya. Selanjutnya refrigeran diekspansikan di katup ekspansi sehingga tekanannya turun begitu pula temperaturnya(dari titik 3 ke titik 4). Setelah itu refrigeran memasuki evaporator untuk pendinginan beban sehingga refrigeran mengalami evaporasi menjadi fase uap (dari titik 4 ke titik 1). Kemudian dikompresi lagi, demikian siklus berlanjut.

Berbeda dengan sistem kompresi uap, sistem absobsi tidak menggunakan kompresor, fungsi kompresor digantikan oleh generator, absorber, dan pompa. Ada dua tipe sistem refrigerasi absorpsi, yaitu sistem aqua-amonia, dengan amonia sebagai refrigeran dan air sebagai absorben, dan sistem lithium bromida-air dengan air sebagai refrigeran dan lithium bromida sebagai absorben. Sistem lithium bromida-air hanya digunakan pada sistem AC karena temperatur beku refrigeran (air) hanya 0 0C, sedangkan sistem aqua-amonia dapat digunakan baik untuk sistem AC maupun sistem refrigerasi, karena temperatur beku sistem aqua-amonia dapat mencapai 33 0C atau lebih rendah.Secara sederhana siklus refrigerasi absorpsi uap digambarkan pada Gambar 2.
                                            


Gambar 2. Skema siklus refrigerasi absorpsi sederhana

Perbandingan kebutuhan dan spesifikasi sistem refigerasi kompresi uap dan absorpsi baik sistem aqua-amonia maupun lithium bromida secara umum adalah pada energi listrik yang dibutuhkan, refrigeran yang digunakan, temperatur kerja, energi termal/panas luar yang dibutuhkan, investasi dan operasi/pemeliharaan. Energi listrik yang dibutuhkan pada siklus absorpsi sekitar 5-10% dari siklus kompresi uap. Refrigeran yang digunakan pada kompresi uap bervariasi, pada absorpsi air-amonia berupa amonia dengan air sebagai absorbent, ramah lingkungan dan murah, sedangkan pada absoprsi Lithium-Bromida berupa lithium bromida sebagai absorben yang mahal. Temperatur kerja pada siklus kompresi uap bergantung pada refrigeran, pada absorpsi air-amonia -33 oC atau lebih rendah serta lithium bromida hanya sampai +7 oC. Siklus absorpsi membutuhkan panas dari luar yang biasanya berupa uap tekanan rendah, air panas dan sejenisnya, sedangkan siklus kompresi uap tidak dibutuhkan. Investasi untuk siklus kompresi uap rendah sedangkan absorpsi uap tinggi, siklus air-amonia cocok untuk di atas 100 TR. Secara operasi/pemeliharaan siklus kompresi uap mudah hanya sering mengganti bagian yang aus karena bergerak. Pada absoprsi air-amonia juga mudah, bila ada kebocoran refrigeran mudah dicium. Sedangkan pada siklus lithium bromida operasi dan pemeliharaan lebih sulit, sulit juga mendeteksi kebocoran refrigeran.

Berdasarkan perbandingan sistem kompresi uap, absorpsi uap aqua-amonia, dan absorpsi lithium bromida maka sistem refrigerasi kompresi uap lebih tepat jika digunakan pada kapal ikan terutama kapal kecil 5-30 GT karena teknologi yang sederhana, tidak membutuhkan energi panas tambahan, investasi tidak besar dan tidak memerlukan ruang yang besar. Walaupun terdapat kelemahan yaitu memerlukan energi listrik yang relatif tinggi, namun secara teknis sistem kompresi uap lebih bisa diterapkan apalagi untuk kapal yang berukuran relatif kecil.



Penulis : Ahmat Fauzi, Peneliti LRMPHP

Selasa, 24 Desember 2019

PENYIMPANAN RUMPUT LAUT DI SALAH SATU UKM KABUPATEN GUNUNG KIDUL

Rumput laut merupakan salah satu komoditas yang banyak dikonsumsi maupun diperjualbelikan di Indonesia termasuk di Kabupaten Gunung Kidul. UKM pengolah maupun pengepul rumput laut akan melakukan penyimpanan rumput laut sebelum diolah atau dipasarkan. Penyimpanan rumput laut dapat berlangsung selama beberapa hari sampai bertahun-tahun. Identifikasi, dan karakterisasi gudang penyimpanan rumput laut dilakukan di salah satu pelaku usaha pengolahan dan distribusi rumput laut yaitu di UD. Rumput Laut Mandiri, Gunung Kidul.

Selama tahun 2019 ini, jenis rumput laut yang disimpan di gudang penyimpanan UD. Rumput Laut Mandiri yaitu : Ulva, agar merah, Pitata, Sargassum sp., Gelidina, Gelidium, Gracilaria, dan Eucheuma spinosum. Sedangkan Eucheuma cottonii belum tersedia karena belum mendapat kiriman dari Makassar.
Jenis rumput laut yang disimpan UD. Rumput Laut Mandiri
Rumput laut yang disimpan ada 2 macam menurut kondisi pengolahannya yaitu rumput laut kering asin dan kering tawar. Pada rumput laut kering asin masih terdapat kandungan garam dalam jumlah banyak, sedangkan pada rumput laut kering tawar, sudah mengalami proses pencucian dan harus dikeringkan dahulu sebelum disimpan.

Para-para penjemuran rumput laut
Sebelum disimpan, rumput laut dikeringkan dengan diletakkan pada para – para yang terpapar sinar matahari. Proses pengeringan dengan sinar matahari ini berlangsung selama dua hari. Pengecekan kadar air dengan cara memegang fisik rumput lautnya. Setelah dirasa cukup, rumput laut kemudian dimasukkan ke dalam karung dan disimpan pada gudang penyimpanan.

Penyimpanan rumput laut di gudang dalam wadah karung dengan cara ditumpuk sampai ketinggian tertentu, di bagian bawahnya ada yang diberi alas palet dan ada yang tidak. Kapasitas maksimal gudang penyimpanan yaitu 20 ton, namun saat ini kapasitas gudang penyimpanan yang digunakan hanya 3 ton. Penyimpanan rumput laut kering asin bisa bertahan selama 3 – 5 tahun, dengan susut bobot  18% selama 4 tahun. 

Kondisi gudang penyimpanan
Perlakuan pasca panen hendaknya perlu menjadi perhatian yang serius dari semua pelaku usaha rumput laut. Pembudidaya harus mulai sadar akan pentingnya jaminan kualitas hasil produksi yang baik, dengan begitu akan terbangun hubungan timbal balik secara positif antara pembudidaya dengan pihak industri pengolah. Jika standar kualitas rumput laut yang dihasilkan baik, maka akan berpengaruh terhadap keberlangsungan usaha industri pengolah, kondisi ini tentunya secara langsung akan menjamin kontinuitas penyerapan produksi dari pembudidaya sehingga kegiatan usaha budidaya akan berjalan secara berkelanjutan (Direktorat Jenderal Perikanan Budidaya, KKP). 

Secara umum rumput laut kering dengan kandungan kadar air 20-30% mampu bertahan 2-3 tahun, bergantung pada cara penyimpanan.  Tempat penyimpanan yang baik adalah tidak lembab, kering dan memiliki sirkulasi udara yang baik. Pada bagian dasar (di atas lantai) diberi alas dari papan penyangga untuk menghindari kelembaban. Penyimpanan yang tidak baik bisa menyebabkan kadar air rumput laut meningkat hingga 50-55%. Pada kondisi demikian, rumput laut bisa membusuk dan tidak mampu disimpan lama. Rumput laut yang mengalami peningkatan kadar air sebaiknya dilakukan penjemuran ulang dan dipadatkan kembali, kemudian disimpan pada tempat yang memenuhi syarat penyimpanan.

Menurut Direktorat Jenderal Perikanan Budidaya,KKP, ada beberapa hal yang perlu diperhatikan dalam proses penyimpanan, antara lain :
1) Tempat/gudang penyimpanan harus mempunyai sirkulasi udara yang baik, tetapi hindari lubang         yang besar, gudang mudah dirawat dan dibersihkan dan jangan menimbulkan kotoran/benda                asing yang dapat mengkontaminasi produk
2) Produk harus disimpan dan ditata secara rapi (di atas palet kayu) dan diberi label (kode lot)
3) Barang yang masuk dan keluar gudang harus tercatat dengan baik (jumlah dan kode lot-nya)
4) Pengeluaran barang dari gudang harus mengikuti system FIFO (first in first out), yaitu barang              yang masuk pertama kali harus keluar terlebih dahulu. Sedangkan barang yang masuk terakhir             harus keluar belakangan.
5) Ketinggian susunan rumput laut yang telah dikemas maksimal 5 susun sedangkan jarak antar              palet/papan (alas) 20 cm. 



Penulis: Ahmat Fauzi, Peneliti LRMPHP

Senin, 23 Desember 2019

TEKNOLOGI CONTROLLED ATMOSPHERE STORAGE (CAS) SEBAGAI ALTERNATIF PENYIMPANAN RUMPUT LAUT

Produk-produk pertanian dan kelautan mengalami penurunan harga yang signifikan ketika musim panen tiba, termasuk juga komoditas rumput laut. Penurunan harga tersebut sangat merugikan petani. Ada beberapa usaha yang dapat dilakukan untuk menjaga harga produk, antara lain dengan penyimpanan agar kualitas tetap terjaga. Penyimpanan bertujuan untuk memperpanjang umur simpan dan mempertahankan kualitas serta kuantitas serta mencegah kerusakan fisik. Prinsip kerja dalam proses penyimpanan adalah treatment saat penyimpanan untuk menjaga mutu dan warna (parameter fisik) dari produk yang disimpan. Beberapa aspek yang perlu diperhatikan pada material/bahan yang disimpan diantaranya parameter suhu, kelembaban/relative humidity (RH), kualitas mutu (kadar proksimat), parameter fisik (warna) dan aerasi yang bertujuan untuk mencegah timbulnya jamur. Dalam penyimpanan produk jika suhu tinggi, lama penyimpanan produk berlangsung dalam waktu pendek. Sedangkan pada saat suhu rendah, lama penyimpanan produk cenderung berlangsung lama.

Dalam upaya penanganan produk pasca panen, proses penyimpanan yang tepat sangat diperlukan. Proses penyimpanan tergantung dengan bahan yang akan disimpan (internal) dan kondisil ingkungan (eksternal). Beberapa diantaranya produk bermasalah karena proses penyimpanan yang kurang baik, misalnya produk disimpan didalam karung, dimana tempat tersebut tidak memiliki sistem aerasi yang baik. Sebagai contoh dalam penyimpanan produk bentuk gabah mengalami respirasi/pernafasan, oksidasi pada keadaan aerobik, terjadi fermentasi pada kondisi anaerobik dan menjadi kecambah pada kondisi lembab. Sehingga dalam penyimpanan diperlukan adanya tempat penyimpanan yang dilengkapi dengan sistem aerasi. Perlakuan penyimpanan produk kering dengan produk basah berbeda yaitu untuk penyimpanan produk kering diperlukan pengaturan suhu rendah dengan kelembaban rendah (sistem aerasi). Sedangkan untuk ruang penyimpanan misalkan sayur kelembaban tinggi dan suhu rendah, dengan sistem refigerasi menggunakan chiller (pendingin).

Dengan penyimpanan yang baik maka produk seperti rumput laut dapat dijaga kualitasnya sampai beberapa bulan sehingga dapat dijual ketika harga normal kembali.  Salah satu teknologi penyimpanan produk pertanian yaitu dengan Teknologi CAS (Controlled Atmosphere Storage). Teknologi CAS saat ini digunakan untuk menyimpan komoditas pertanian. CAS adalah alat penyimpan komoditi paling mutakhir saat ini dengan memadukan teknologi pendinginan, pengontrol kelembaban udara RH, oksigen O2, karbondioksida CO2,  nitrogen N2, dan Ethylene. Bila dibandingkan dengan metode penyimpanan lain seperti Cold Storage, CAS lebih unggul karena dapat mengontrol suhu, RH, O2, CO2, N2 dan ethylene, sedangkan cold storage hanya dapat mengatur suhu saja. Teknologi CAS membutuhkan modal yang besar sehingga akan cocok untuk penyimpanan kapasitas tinggi.

Peralatan teknologi CAS terdiri dari:
Storage Room adalah rangkaian panel insulasi setebal 10 cm dilengkapi pintu dan jendela intai,
Refrigerator adalah sebagai pengendali temperatur storage room,
Humidifier adalah pengendali kelembaban storage room dengan sistem ultrasonic,
O2 dan CO2 Absorber adalah pengendali agar tetap hidup tetapi tidak tumbuh,
Ethylene Controller adalah mengatur produk agar tidak busuk.
Adapun keunggulan Teknologi CAS antara lain:
Penyimpanan produk dapat lebih lama yaitu 3-6 bulan.
Faktror hilang susut bobot sangat minimal (<10 %)
Kualitas dan kesegaran produk lebih terjaga
Hasil produk di konsumen lebih stabil
Jangkauan distribusi lebih luas
Peningkatan kesejahteraan petani

Salah satu teknologi CAS yang sudah ada yaitu teknologi CAS di PT. Pura Group Indonesia, Kudus Jawa tengah. Pura Group berdiri sejak tahun 1908, sejak tahun 1999 memproduksi mesin-mesin pertanian dan mesin es serpih beserta kelengkapannya.Bahan yang disimpan pada storage dengan teknologi CAS untuk komoditas pertanian biasanya disimpan dalam wadah karung. Berat rata-rata setiap karung 30 kg. Biaya penyimpanan saat ini dalam waktu satu bulan maksimal Rp. 1000,-/kg. Biaya akan menjadi lebih hemat apabila penyimpanan dalam jumlah yang banyak dalam satu storage. 

Dengan melihat keunggulan-keunggulan di atas, maka teknologi CAS ini dapat dijadikan alternatif penyimpanan produk-produk rumput laut karena karakteristik kebutuhan parameter penyimpanan rumput laut hampir sama dengan produk pertanian seperti suhu, kelembaban dan lain-lain. Untuk penyimpanan rumput laut dapat dilakukan dengan memodifikasi beberapa parameter sesuai dengan karakteristik rumput laut.Parameter yang dikontrol antara lain kadar air yang berpengaruh pada susut bobot, mutu dan warna/tekstur, jamur dan serangga.  Dengan pengontrolan sistem CAS, parameter-parameter tersebut dapat dijaga dengan baik.

Teknologi CAS di PT. Pura Grup


Penulis : Ahmat Fauzi, Peneliti LRMPHP

Jumat, 20 Desember 2019

Perubahan Citra Mata Ikan Tuna Selama Penyimpanan Suhu Ruang

Ikan menunjukkan beberapa perubahan fisik yang jelas selama proses penurunan kesegaran seperti warna, tekstur, bau, kulit, sisik, mata, insang dan perut. Perubahan tersebut dapat digunakan untuk menentukan kesegaran ikan secara tunggal. Warna adalah salah satu atribut kualitas ikan yang paling penting karena hubungannya dengan kesegaran produk dan memiliki efek langsung pada persepsi konsumen. Warna mata ikan berubah dari bersih dan cerah menjadi berlumpur dan menguning setelah ikan menjadi busuk ketika disimpan secara alami. Hal ini menunjukkan bahwa warna mata ikan dapat digunakan sebagai parameter dalam menentukan kesegaran ikan.

Analisis citra merupakan alat yang digunakan untuk mengevaluasi data berupa gambar dan menganalisis perubahan warnanya menggunakan perangkat lunak sehingga dapat digunakan untuk menentukan kesegaran ikan. Analisis citra terdiri dari tiga langkah utama yaitu pengolahan level dasar (akuisisi citra dan proses awal), pengolahan level menengah (segmentasi dan pengukuran objek), dan pengolahan citra lanjutan. Dengan menerapkan analisa citra di bidang pengolahan hasil perikanan maka akan mendapatkan sebuah metode pemeriksaan kualitas ikan yang tidak merusak ikan dan tidak berbahaya bagi penguji dengan waktu yang relatif cepat.

Pengolahan citra mata ikan menggunakan software matlab R.2017a. Tahapan pengolahan citra meliputi pengambilan citra mata ikan, segmentasi ROI (region of interest), konversi citra RGB menjadi grayscale, dan ekstraksi fitur. Ekstraksi fitur yang digunakan yaitu gray-level co-occurrence matrix (GLCM). Pengujian dilakukan selama 20 jam dengan pengambilan citra mata setiap 2 jam pada suhu ruang. Hasil penelitian menunjukkan nilai parameter energy (0,964) dan homogenity (0,902) memiliki hubungan korelasi terhadap lama waktu pengujian sedangkan nilai parameter contrast (-0,554) dan correlation (-0,395) tidak memiliki hubungan korelasi terhadap lama waktu pengujian. Dari hasil pengamatan dapat disimpulkan bahwa parameter citra mata ikan yang meliputi energy dan homogenity memiliki hubungan yang signifikan dengan waktu penyimpanan ikan tuna pada suhu ruang sehingga dapat digunakan untuk menentukan kualitas ikan.


Hasil pengolahan citra mata ikan tuna
Penulis : Twi Novianto, Peneliti LRMPHP

Pengaplikasi Deret Sensor Untuk Pendeteksian Kadar Formalin


Ikan merupakan sumber bahan pangan yang bermutu tinggi, terutama karena banyak mengandung protein yang sangat dibutuhkan oleh tubuh manusia. Namun demikian ikan merupakan bahan pangan yang mudah mengalami kerusakan atau kemunduran mutu (perishable food) terutama pada daerah tropis. Untuk mencegah kemunduran mutu pada ikan pada umumnya menggunakan suhu rendah. Bahan yang sering digunakan untuk menjaga suhu tetap rendah adalah es tetapi karena daya tahan es yang terbatas dan ada penambahan biaya untuk pembelian es maka sering diabaikan oleh nelayan. Oleh karena itu sering digunakan bahan kimia untuk pengawet. Salah satu bahan kimia yang digunakan adalah formalin  Penggunaan formalin dimaksudkan untuk memperpanjang umur simpan, karena formalin adalah senyawa anti mikroba yang efektif dalam membunuh bakteri. Menurut WHO formaldehid (senyawa yang terdapat pada formalin) terdapat dalam produk makanan karena kegunaannya sebagai zat bakteoristik yaitu dapat menghambat pertumbuhan mikroba dalam produk pangan sehingga umur simpan produk tersebut meningkat.

Formalin merupakan bahan kimia berbahaya yang dilarang digunakan untuk bahan tambahan makanan menurut peraturan Menteri Kesehatan No. 033 Tahun 2012 tentang Bahan Tambahan Pangan. Formalin sangat berbahaya bagi kesehatan manusia. Kandungan formalin yang tinggi di dalam tubuh dapat menyebabkan iritasi lambung, alergi, bersifat karsinogenik (menyebabkan kanker) dan bersifat mutagen (menyebabkan perubahan fungsi sel/jaringan) serta orang yang mengonsumsinya akan muntah, diare bercampur darah dan kematian yang disebabkan adanya kegagalan peredaran darah.

Kandungan formalin pada bahan makanan sulit untuk diidentifikasi menggunakan panca indera manusia karena sifatnya yang sangat berbahaya. Berdasarkan sifat fisik formalin yang memiliki bau yang tajam maka dapat digunakan teknologi sensor gas untuk mendeteksi adanya kandungan formalin pada bahan makanan. Sensor gas yang dipilih adalah sensor MQ 3 dan MQ 137. Sensor diuji pada larutan formalin dengan kosentrasi 0.025%, 0.05%, 0.075% dan 0.1%. Dengan cara yang sama dilakukan pengujian pada daging fillet ikan tuna dengan berat 50 gr yang telah direndam selama 10 menit. Hasil pengujian sensor MQ 3 pada daging ikan tuna menunjukkan adanya korelasi dengan nilai koefisien korelasi 0.99 sedangkan pada sensor MQ 137 menunjukkan adanya korelasi dengan nilai koefisien korelasi sebesar 0.98. Berdasarkan hal ini dapat disimpulkan bahwa sensor MQ 3 dan MQ 137 dapat digunakan untuk mendeteksi kadar formalin pada daging ikan tuna.


Diagram modul sensor gas

Penulis : Toni Dwi Novianto, Peneliti LRMPHP

Kamis, 19 Desember 2019

Peluang Computer Vision untuk Penentuan Kualitas Ikan


Ikan merupakan sumber protein yang penting bagi manusia. Total konsumsi ikan meningkat secara signifikan pada beberapa tahun terakhir. Terdapat beberapa parameter yang mempengaruhi kualitas ikan antara lain ketersediaan, keamanan, nilai gizi dan kesegaran. Kesegaran ikan adalah parameter yang mempengaruhi secara langsung kualitas ikan. Kesegaran ikan dapat ditentukan berdasarkan perubahan post mortem yang  dapat mempengaruhi kondisi fisik, kimia, dan mikrobiologi pada tubuh ikan. Terdapat beberapa metode untuk menentukan kesegaran ikan yaitu secara fisik, kimia, dan mikrobiologi serta sensori. Untuk metode sensori, parameter yang biasa digunakan adalah bau, warna, dan tekstur. Metode sensori merupakan metode ilmiah yang digunakan untuk mengukur, menganalisis, dan menginterpretasikan respon terhadap suatu produk berdasarkan yang ditangkap oleh indra manusia, seperti penglihatan, penciuman, perasa, peraba, dan pendengaran. Metode sensori memiliki kekurangan yaitu membutuhkan banyak panelis dan waktu yang lama. Selain itu keakuratannya ditentukan oleh seberapa ahli panelis yang digunakan. Sebaliknya menggunakan metode computer vision untuk menentukan kualitas ikan memiliki keunggulan lebih konsisten, efisien dan dapat menghemat biaya serta akurasi dan kecepatan yang lebih baik dibandingkan dengan pengujian manusia.

Computer vision merupakan suatu konstruksi untuk mendiskripsikan informasi eksplisit dan bermakna tentang objek fisik melalui analisis gambar. Gambar yang diperoleh dari sensor fisik kemudian dianalisis menggunakan hardware dan software yang sesuai untuk melakukan tugas secara visual yang diharapkan dapat meningkatkan kualitas penglihatan manusia dengan didukung oleh perangkat elektronik. Tahap utama dalam analisis pengolahan gambar adalah : (1) Akuisisi gambar dan konversi dalam bentuk digital; (2) peningkatan kualitas gambar untuk pre-processing; (3) partisi gambar digital untuk mendapatkan daerah yang diinginkan menggunakan proses segmentasi; (4) mendapatkan karakteristik objek gambar dengan menggunakan operasi pengukuran objek; (5) pengklasifikasian untuk mengidentifikasi objek gambar. Mengambil, memproses dan menganalisis gambar adalah aspek utama dari computer vision yang harus dipertimbangkan dalam menentukan kesegaran ikan secara visual. Pengamatan visual secara otomatis mulai banyak diminati karena memiliki keunggulan seperti biaya yang rendah, hasil yang konsisten dan akurat serta proses yang cepat.  Sehingga tujuan utamanya adalah untuk menggantikan pengamatan visual secara tradisional dengan sistem computer vision untuk menentukan kualitas ikan.
 
Skema Sistem Computer Vision

Penulis : Toni Dwi Novianto, Peneliti LRMPHP

Rabu, 18 Desember 2019

Pengukuran Nilai Porositas Menggunakan Software ImageJ

ImageJ (https://imagej.nih.gov/ij/) adalah perangkat lunak yang dapat digunakan untuk menganalisis pori-pori dan untuk menentukan wilayah distribusi ukuran berbasis pori, diameter pori, dan fraksi persen daerah pori-pori dari suatu objek. Perangkat lunak ini menggunakan kontras antara dua fase (pori-pori dan bagian padat) dalam gambar. Pengukuran porositas menggunakan software ImageJ mengikuti metode yang telah dilakukan oleh Ridha dan Darminto (2016) yang dimuat dalam Jurnal Fisika dan Aplikasinya. Hasil mikrografi SEM (scanning electron microscopy) selanjutnya dianalisis menggunakan software ImageJ untuk mengetahui ukuran pori permukaan suatu objek. Ukuran pori ini nantinya digunakan untuk menentukan nilai porositas.
Analisis mikrografi SEM pada software ImageJ meliputi beberapa tahap yaitu :

1. Tahap persiapan gambar
Langkah pada tahap ini meliputi membuka software Image-J > open file mikrografi SEM sampel > pilih menu Analyze > Set Scale (nm, µ m) > pilih menu Image > Crop gambar. Hasil gambar pada tahap ini ditunjukkan pada gambar berikut.

Tampilan mikrografi SEM (Sumber : www.jitek.ub.ac.id)
2. Tahap threshold gambar
Tahap ini merupakan tahap segmentasi warna gambar. Pada tahap ini, warna dibedakan menjadi warna partikel atau pori dan warna latar belakang (background). Langkah pada tahap ini adalah pilih menu Image > Adjust > Threshold > Setting ukuran warna berdasarkan topografi gambar. Hasil gambar pada tahap ini ditunjukkan pada gambar berikut.

Tampilan hasil proses threshold
3. Tahap analisis gambar
Langkah dalam tahap ini adalah pilih menu Analyze > Set parameter > Ok, pilih kembali menu Analyze > Analyze Particles. Nilai data hasil analisis keluar dalam bentuk file Excel. Hasil gambar pada tahap ini ditunjukkan pada gambar berikut.

Tampilan hasil proses analyze particle
Selanjutnya dari software imageJ diperoleh data luas permukaan total sampel yang dianalisis (AT) dan luas total pori yang teranalisis dari sampel (ATP). Maka nilai porositas dapat dihitung dengan persamaan berikut.







Penulis : Toni Dwi Novianto, Peneliti LRMPHP